[ad_1]
CDC. Tickborne disease surveillance dashboard Atlanta, GA: Centers for Disease Control and Prevention; 2022. Accessed 13 Sept 2023. https://www.cdc.gov/ticks/data-summary/index.html.
Rosenberg R, Lindsey NP, Fischer M, Gregory CJ, Hinckley AF, Mead PS, et al. Vital signs: trends in reported vectorborne disease cases—United States and Territories, 2004–2016. MMWR Morb Mortal Wkly Rep. 2018;67:496–501.
Google Scholar
Thompson JM, Carpenter A, Kersh GJ, Wachs T, Commins SP, Salzer JS. Geographic distribution of suspected alpha-gal syndrome cases—United States, January 2017-December 2022. MMWR Morb Mortal Wkly Rep. 2023;72:815–20.
Google Scholar
CDC. Regions where ticks live: Centers for Disease Control and Prevention. 2022. Accessed 13 Sept 2023. https://www.cdc.gov/ticks/geographic_distribution.html.
Ogden NH, Ben Beard C, Ginsberg HS, Tsao JI. Possible effects of climate change on Ixodid ticks and the pathogens they transmit: predictions and observations. J Med Entomol. 2020;58:1536–45.
Sagurova I, Ludwig A, Ogden NH, Pelcat Y, Dueymes G, Gachon P. Predicted northward expansion of the geographic range of the tick vector Amblyomma americanum in North America under future climate conditions. Environ Health Perspect. 2019;127:107014.
Google Scholar
Tsao JI, Hamer SA, Han S, Sidge JL, Hickling GJ. The contribution of wildlife hosts to the rise of ticks and tick-borne diseases in North America. J Med Entomol. 2021;58:1565–87.
Google Scholar
Kollars TM Jr, Oliver JH Jr, Durden LA, Kollars PG. Host association and seasonal activity of Amblyomma americanum (Acari: Ixodidae) in Missouri. J Parasitol. 2000;86:1156–9.
Google Scholar
Goddard J. A ten-year study of tick biting in Mississippi: implications for human disease transmission. J Agromedicine. 2002;8:25–32.
Google Scholar
Felz MW, Durden LA, Oliver JH Jr. Ticks parasitizing humans in Georgia and South Carolina. J Parasitol. 1996;82:505–8.
Google Scholar
Jordan RA, Egizi A. The growing importance of lone star ticks in a Lyme disease endemic county: passive tick surveillance in Monmouth County, NJ, 2006–2016. PLoS ONE. 2019;14:e0211778.
Google Scholar
Needham GR, Teel PD. Off-host physiological ecology of Ixodid ticks. Annu Rev Entomol. 1991;36:659–81.
Google Scholar
Hair JA, Sauer JR, Durham KA. Water balance and humidity preference in three species of ticks. J Med Entomol. 1975;12:37–47.
Google Scholar
Raghavan RK, Goodin DG, Hanzlicek GA, Zolnerowich G, Dryden MW, Anderson GA, et al. Maximum entropy-based ecological niche model and bio-climatic determinants of lone star tick (Amblyomma americanum) niche. Vector Borne Zoonotic Dis. 2016;16:205–11.
Google Scholar
Clarke-Crespo E, Moreno-Arzate CN, Lopez-Gonzalez CA. Ecological niche models of four hard tick genera (Ixodidae) in Mexico. Animals. 2020;10:649.
Google Scholar
Trout Fryxell RT, Moore JE, Collins MD, Kwon Y, Jean-Philippe SR, Schaeffer SM, et al. Habitat and vegetation variables are not enough when predicting tick populations in the Southeastern United States. PLoS ONE. 2015;10:e0144092.
Google Scholar
Mathisson DC, Kross SM, Palmer MI, Diuk-Wasser MA. Effect of vegetation on the abundance of tick vectors in the Northeastern United States: a review of the literature. J Med Entomol. 2021;58:2030–7.
Google Scholar
Brown HE, Yates KF, Dietrich G, MacMillan K, Graham CB, Reese SM, et al. An acarologic survey and Amblyomma americanum distribution map with implications for tularemia risk in Missouri. Am J Trop Med Hyg. 2011;84:411–9.
Google Scholar
Mangan MJ, Fore SA, Kim HJ. Ecological modeling over seven years to describe the number of host-seeking Amblyomma americanum in each life stage in northeast Missouri. J Vector Ecol. 2018;43:271–84.
Google Scholar
Kessler WH, Blackburn JK, Sayler KA, Glass GE. Estimating the geographic distribution of host-seeking adult Amblyomma americanum (Acari: Ixodidae) in Florida. J Med Entomol. 2019;56:55–64.
Google Scholar
Kessler WH, Ganser C, Glass GE. Modeling the distribution of medically important tick species in Florida. Insects. 2019;10:190.
Google Scholar
Tran T, Prusinski MA, White JL, Falco RC, Kokas J, Vinci V, et al. Predicting spatio-temporal population patterns of Borrelia burgdorferi, the Lyme disease pathogen. J Appl Ecol. 2022;59:2779–89.
Google Scholar
Guerra M, Walker E, Jones C, Paskewitz S, Cortinas MR, Stancil A, et al. Predicting the risk of Lyme disease: habitat suitability for Ixodes scapularis in the north central United States. Emerg Infect Dis. 2002;8:289–97.
Google Scholar
Ogden NH, Bigras-Poulin M, O’Callaghan CJ, Barker IK, Lindsay LR, Maarouf A, et al. A dynamic population model to investigate effects of climate on geographic range and seasonality of the tick Ixodes scapularis. Int J Parasitol. 2005;35:375–89.
Google Scholar
CDC. Diseases transmitted by ticks: Centers for Disease Control and Prevention. 2023. Accessed 13 Sept 2023. https://www.cdc.gov/ticks/diseases/.
Goddard J, Varela-Stokes AS. Role of the lone star tick, Amblyomma americanum (L.), in human and animal diseases. Vet Parasitol. 2009;160:1–12.
Google Scholar
Lippi CA, Ryan SJ, White AL, Gaff HD, Carlson CJ. Trends and opportunities in tick-borne disease geography. J Med Entomol. 2021;58:2021–9.
Google Scholar
Health GDoP. 2021 Annual tick surveillance summary. Insects and diseases; summaries and reports: GA DPH; 2022. Accessed 13 Sept 2023. https://dph.georgia.gov/environmental-health/insects-and-diseases.
Gleim ER, Garrison LE, Vello MS, Savage MY, Lopez G, Berghaus RD, et al. Factors associated with tick bites and pathogen prevalence in ticks parasitizing humans in Georgia, USA. Parasit Vectors. 2016;9:125.
Google Scholar
Romer Y, Adcock K, Wei Z, Mead DG, Kirstein O, Bellman S, et al. Isolation of Heartland virus from lone star ticks, Georgia, USA, 2019. Emerg Infect Dis. 2022;28:786–92.
Google Scholar
EPA. Ecoregion download files by state—Region 4; Georgia: United States Environmental Protection Agency. 2023. Accessed 13 Sept 2023. https://www.epa.gov/eco-research/ecoregion-download-files-state-region-4#pane-09.
Topographic-map.com. Georgia topographic map. Accessed 13 Sept 2023. https://en-gb.topographic-map.com/map-wzcz/Georgia/.
Beck HE, Zimmermann NE, McVicar TR, Vergopolan N, Berg A, Wood EF. Present and future Koppen-Geiger climate classification maps at 1-km resolution. Sci Data. 2018;5:180214.
Google Scholar
Frankson R, Kunkel KE, Stevens LE, Stewart BC, Sweet W, Murphey B, et al. Georgia state climate summary 2022. NOAA/NESDIS; 2022.
CDC. Guide to the surveillance of metastriate ticks (Acari: Ixodidae) and their pathogens in the United States. Centers for Disease Control and Prevention, Diseases DoV-B; 2020 April 2020.
Keirans JE, Litwak TR. Pictorial key to the adults of hard ticks, family Ixodidae (Ixodida: Ixodoidea), east of the Mississippi River. J Med Entomol. 1989;26:435–48.
Google Scholar
Keirans JE, Durden LA. Illustrated key to nymphs of the tick genus Amblyomma (Acari: Ixodidae) found in the United States. J Med Entomol. 1998;35:489–95.
Google Scholar
Semtner PJ, Hair JA. The ecology and behavior of the lone star tick (Acarina: Ixodidae). IV. The daily and seasonal activity patterns of adults in different habitat types. J Med Entomol. 1973;10:337–44.
Google Scholar
Davidson WR, Siefken DA, Creekmore LH. Seasonal and annual abundance of Amblyomma americanum (Acari: Ixodidae) in central Georgia. J Med Entomol. 1994;31:67–71.
Google Scholar
Pascoe EL, Marcantonio M, Caminade C, Foley JE. Modeling potential habitat for Amblyomma tick species in California. Insects. 2019;10:201.
Google Scholar
Springer YP, Jarnevich CS, Barnett DT, Monaghan AJ, Eisen RJ. Modeling the present and future geographic distribution of the lone star tick, Amblyomma americanum (Ixodida: Ixodidae), in the Continental United States. Am J Trop Med Hyg. 2015;93:875–90.
Google Scholar
Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol. 2017;37:4302–15.
Keller CA, Knowland KE, Duncan BN, Liu J, Anderson DC, Das S, et al. Description of the NASA GEOS composition forecast modeling system GEOS-CF v1.0. J Adv Model Earth Syst. 2021;13:e2020002413.
Google Scholar
Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens Environ. 2017;202:18–27.
Google Scholar
National Land Cover Database (NLCD) 2019 Products (ver. 2.0, June 2021): U.S. Geological Survey data release. U.S. Geological Survey. 2021. Accessed 15 June 2023. https://www.sciencebase.gov/catalog/item/5f21cef582cef313ed940043.
Hole-filled SRTM for the globe Version 4. CGIAR-CSI SRTM 90m Database. 2008. Accessed 10 June 2023. https://srtm.csi.cgiar.org.
MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V061. NASA EOSDIS Land Processes Distributed Active Archive Center. 2021. Accessed 15 Aug 2023. https://doi.org/10.5067/MODIS/MOD13Q1.061.
DNR G. Harvest summaries and population surveys: deer harvest dashboard: GA Department of Natural Resources; 2023 [2021–2022].
Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–74.
Google Scholar
Bisanzio D, Fernandez MP, Martello E, Reithinger R, Diuk-Wasser MA. Current and future spatiotemporal patterns of Lyme disease reporting in the Northeastern United States. JAMA Netw Open. 2020;3:e200319.
Google Scholar
Diuk-Wasser MA, Hoen AG, Cislo P, Brinkerhoff R, Hamer SA, Rowland M, et al. Human risk of infection with Borrelia burgdorferi, the Lyme disease agent, in eastern United States. Am J Trop Med Hyg. 2012;86:320–7.
Google Scholar
Pepin KM, Eisen RJ, Mead PS, Piesman J, Fish D, Hoen AG, et al. Geographic variation in the relationship between human Lyme disease incidence and density of infected host-seeking Ixodes scapularis nymphs in the Eastern United States. Am J Trop Med Hyg. 2012;86:1062–71.
Google Scholar
Merten HA, Durden LA. A state-by-state survey of ticks recorded from humans in the United States. J Vector Ecol. 2000;25:102–13.
Google Scholar
Schulze TL, Jordan RA. Influence of meso- and microscale habitat structure on focal distribution of sympatric Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae). J Med Entomol. 2005;42:285–94.
Google Scholar
Ma D, Lun X, Li C, Zhou R, Zhao Z, Wang J, et al. Predicting the potential global distribution of Amblyomma americanum (Acari: Ixodidae) under near current and future climatic conditions, using the maximum entropy model. Biology. 2021;10:1057.
Google Scholar
Koch HG. Survival of the lone star tick, Amblyomma Americanum (Acari: Ixodidae), in contrasting habitats and different years in Southeastern Oklahoma, USA. J Med Entomol. 1984;21:69–79.
Yoder JA, Benoit JB. Water vapor absorption by nymphal lone star tick, Amblyomma americanum (Acari: Ixodidae), and its ecological significance. Int J Acarol. 2003;29:259–64.
Needham GR, Jaworski DC, Chen C-P, Lee RE Jr. Cold-hardiness of a laboratory colony of lone star ticks (Acari: Ixodidae). J Med Entomol. 1996;33:706–10.
Google Scholar
KnÜLle W, Rudolph D. Humidity relationships and water balance of ticks. In: Obenchain FD, Galun R, editors. Physiology of ticks. Oxford: Pergamon; 1982. p. 43–70.
Adejinmi JO. Effect of water flooding on the oviposition capacity of engorged adult females and hatchability of eggs of dog ticks: Rhipicephalus sanguineus and Haemaphysalis leachi leachi. J Parasitol Res. 2011;2011:824162.
Google Scholar
Weiler M, Duscher GG, Wetscher M, Walochnik J. Tick abundance: a one year study on the impact of flood events along the banks of the river Danube, Austria. Exp Appl Acarol. 2017;71:151–7.
Google Scholar
Morris CN, Gaff HD, Berghaus RD, Wilson CM, Gleim ER. Tick species composition, collection rates, and phenology provide insights into tick-borne disease ecology in Virginia. J Med Entomol. 2022;59:1993–2005.
Google Scholar
Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ. 2002;83:195–213.
Google Scholar
Myneni RB, Hall FG, Sellers PJ, Marshak AL. The interpretation of spectral vegetation indexes. IEEE Trans Geosci Remote Sens. 1995;33:481–6.
Google Scholar
Campbell JB, Wynne RH, Thomas VA. Introduction to remote sensing. 6th ed. New York: The Guilford Press; 2023.
Li R, Xia H, Zhao X, Guo Y. Mapping evergreen forests using new phenology index, time series Sentinel-1/2 and Google Earth Engine. Ecol Ind. 2023;149:110157.
Sonenshine DE. The biology of tick vectors of human disease. In: Goodman JL, Dennis DT, Sonenshine DE, editors. Tick-borne diseases of humans. Washington: ASM Press; 2005. p. 12–36.
Elith J, Leathwick JR. Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst. 2009;40:677–97.
Gleim ER, Zemtsova GE, Berghaus RD, Levin ML, Conner M, Yabsley MJ. Frequent prescribed fires can reduce risk of tick-borne diseases. Sci Rep. 2019;9:9974.
Google Scholar
Stein KJ, Waterman M, Waldon JL. The effects of vegetation density and habitat disturbance on the spatial distribution of ixodid ticks (Acari: Ixodidae). Geospat Health. 2008;2:241–52.
Google Scholar
Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography. 2006;29:129–51.
Google Scholar
[ad_2]
Source link