[ad_1]
Guo, Y. et al. Global variation in the effects of ambient temperature on mortality: A systematic evaluation. Epidemiology 25, 781–789. https://doi.org/10.1097/EDE.0000000000000165 (2014).
Google Scholar
Gasparrini, A. et al. Projections of temperature-related excess mortality under climate change scenarios. Lancet Planet Health 1, e360–e367. https://doi.org/10.1016/S2542-5196(17)30156-0 (2017).
Google Scholar
Gasparrini, A. et al. Mortality risk attributable to high and low ambient temperature: A multicountry observational study. The Lancet 386, 369–375. https://doi.org/10.1016/S0140-6736(14)62114-0 (2015).
Google Scholar
The Eurowinter Group. Cold exposure and winter mortality from ischaemic heart disease, cerebrovascular disease, respiratory disease, and all causes in warm and cold regions of Europe. The Lancet 349, 1341–1346. https://doi.org/10.1016/S0140-6736(96)12338-2 (1997).
Google Scholar
Madaniyazi, L. et al. Seasonality of mortality under a changing climate: A time-series analysis of mortality in Japan between 1972 and 2015. Environ. Health Prev. Med. 26, 69. https://doi.org/10.1186/s12199-021-00992-8 (2021).
Google Scholar
Hajat, S. Health effects of milder winters: A review of evidence from the United Kingdom. Environ. Health 16, 109. https://doi.org/10.1186/s12940-017-0323-4 (2017).
Google Scholar
Walkowiak, M. P., Domaradzki, J. & Walkowiak, D. Unmasking the COVID-19 pandemic prevention gains: Excess mortality reversal in 2022. Public Health 223, 193–201. https://doi.org/10.1016/j.puhe.2023.08.004 (2023).
Google Scholar
Falagas, M. E. et al. Seasonality of mortality: The September phenomenon in Mediterranean countries. CMAJ 181, 484–486. https://doi.org/10.1503/cmaj.090694 (2009).
Google Scholar
Alcoforado, M. J. et al. Weather and climate versus mortality in Lisbon (Portugal) since the 19th century. Appl. Geogr. 57, 133–141. https://doi.org/10.1016/j.apgeog.2014.12.017 (2015).
Google Scholar
Liddell, C., Morris, C., Thomson, H. & Guiney, C. Excess winter deaths in 30 European countries 1980–2013: A critical review of methods. J. Public Health 38, 806–814. https://doi.org/10.1093/pubmed/fdv184 (2016).
Google Scholar
Linares, C., Diaz, J., Tobías, A., Carmona, R. & Mirón, I. J. Impact of heat and cold waves on circulatory-cause and respiratory-cause mortality in Spain: 1975–2008. Stoch. Environ. Res Risk Assess. 29, 2037–2046. https://doi.org/10.1007/s00477-014-0976-2 (2015).
Google Scholar
Jones, R. P. Excess winter mortality (EWM) as a dynamic forensic tool: Where, when, which conditions, gender, ethnicity and age. Int. J. Environ. Res. Public Health 18, 2161. https://doi.org/10.3390/ijerph18042161 (2021).
Google Scholar
van Asten, L. et al. Mortality attributable to 9 common infections: Significant effect of influenza A, respiratory syncytial virus, influenza B, norovirus, and parainfluenza in elderly persons. J. Infect. Dis. 206, 628–639. https://doi.org/10.1093/infdis/jis415 (2012).
Google Scholar
Almendra, R., Santana, P. & Vasconcelos, J. Evidence of social deprivation on the spatial patterns of excess winter mortality. Int. J. Public Health 62, 849–856. https://doi.org/10.1007/s00038-017-0964-7 (2017).
Google Scholar
Gonseth, S., Nusslé, S., Bovet, P., Panese, F. & Wiemels, J. L. Excess winter deaths caused by cardiovascular diseases are associated with both mild winter temperature and socio-economic inequalities in the U.S. Int. J. Cardiol. 187, 642–644. https://doi.org/10.1016/j.ijcard.2015.03.412 (2015).
Google Scholar
Iparraguirre, J. Have winter fuel payments reduced excess winter mortality in England and Wales?. J. Public Health (Oxf) 37, 26–33. https://doi.org/10.1093/pubmed/fdu063 (2015).
Google Scholar
Healy, J. D. Excess winter mortality in Europe: A cross country analysis identifying key risk factors. J. Epidemiol. Community Health 57, 784–789. https://doi.org/10.1136/jech.57.10.784 (2003).
Google Scholar
Madaniyazi, L. et al. Seasonal variation in mortality and the role of temperature: A multi-country multi-city study. Int. J. Epidemiol. 51, 122–133. https://doi.org/10.1093/ije/dyab143 (2022).
Google Scholar
Douglas, S. & Rawles, J. Latitude-related changes in the amplitude of annual mortality rhythm. The biological equator in man. Chronobiol. Int. 16, 199–212. https://doi.org/10.3109/07420529909019086 (1999).
Google Scholar
Eurostat. Eurostat Databse. https://ec.europa.eu/eurostat/data/database (2023).
Home European Climate Assessment & Dataset. https://www.ecad.eu/ (2023).
Beck, H. E. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214. https://doi.org/10.1038/sdata.2018.214 (2018).
Google Scholar
Barnett, A. G., Tong, S. & Clements, A. C. A. What measure of temperature is the best predictor of mortality?. Environ. Res. 110, 604–611. https://doi.org/10.1016/j.envres.2010.05.006 (2010).
Google Scholar
Saha, M. V., Davis, R. E. & Hondula, D. M. Mortality displacement as a function of heat event strength in 7 US cities. Am. J. Epidemiol. 179, 467–474. https://doi.org/10.1093/aje/kwt264 (2014).
Google Scholar
Qiao, Z., Guo, Y., Yu, W. & Tong, S. Assessment of short- and long-term mortality displacement in heat-related deaths in Brisbane, Australia, 1996–2004. Environ. Health Perspect. 123, 766–772. https://doi.org/10.1289/ehp.1307606 (2015).
Google Scholar
Rodrigues, M., Santana, P. & Rocha, A. Effects of extreme temperatures on cerebrovascular mortality in Lisbon: A distributed lag non-linear model. Int. J. Biometeorol. 63, 549–559. https://doi.org/10.1007/s00484-019-01685-2 (2019).
Google Scholar
Rodrigues, M., Santana, P. & Rocha, A. Bootstrap approach to validate the performance of models for predicting mortality risk temperature in Portuguese Metropolitan Areas. Environ. Health 18, 25. https://doi.org/10.1186/s12940-019-0462-x (2019).
Google Scholar
Achebak, H., Devolder, D., Ingole, V. & Ballester, J. Reversal of the seasonality of temperature-attributable mortality from respiratory diseases in Spain. Nat. Commun. 11, 2457. https://doi.org/10.1038/s41467-020-16273-x (2020).
Google Scholar
Imai, C., Armstrong, B., Chalabi, Z., Mangtani, P. & Hashizume, M. Time series regression model for infectious disease and weather. Environ. Res. 142, 319–327. https://doi.org/10.1016/j.envres.2015.06.040 (2015).
Google Scholar
Meerhoff, T. J., Paget, J. W., Kimpen, J. L. & Schellevis, F. Variation of respiratory syncytial virus and the relation with meteorological factors in different winter seasons. Pediatr. Infect. Dis. J. 28, 860. https://doi.org/10.1097/INF.0b013e3181a3e949 (2009).
Google Scholar
Hawkes, M. T. et al. Seasonality of respiratory viruses at northern latitudes. JAMA Netw. Open 4, e2124650. https://doi.org/10.1001/jamanetworkopen.2021.24650 (2021).
Google Scholar
Bloom-Feshbach, K. et al. Latitudinal variations in seasonal activity of influenza and respiratory syncytial virus (RSV): A global comparative review. PLoS ONE 8, e54445. https://doi.org/10.1371/journal.pone.0054445 (2013).
Google Scholar
Tang, J. W. et al. Where have all the viruses gone? Disappearance of seasonal respiratory viruses during the COVID-19 pandemic. J. Med. Virol. 93, 4099–4101. https://doi.org/10.1002/jmv.26964 (2021).
Google Scholar
Rodgers, L. et al. Changes in seasonal respiratory illnesses in the United States during the coronavirus disease 2019 (COVID-19) pandemic. Clin. Infect. Dis. 73, S110–S117. https://doi.org/10.1093/cid/ciab311 (2021).
Google Scholar
Telfar-Barnard, L., Baker, M. G., Wilson, N. & Howden-Chapman, P. The rise and fall of excess winter mortality in New Zealand from 1876 to 2020. Int. J. Biometeorol. https://doi.org/10.1007/s00484-023-02573-6 (2023).
Google Scholar
Reicherz, F. et al. Waning immunity against respiratory syncytial virus during the coronavirus disease 2019 pandemic. J. Infect. Dis. 226, 2064–2068. https://doi.org/10.1093/infdis/jiac192 (2022).
Google Scholar
Riepl, A. et al. The surge of RSV and other respiratory viruses among children during the second COVID-19 pandemic winter season. Front. Pediatr. 11, 1112150. https://doi.org/10.3389/fped.2023.1112150 (2023).
Google Scholar
Pruccoli, G. et al. The importance of RSV epidemiological surveillance: A multicenter observational study of RSV infection during the COVID-19 pandemic. Viruses 15, 280. https://doi.org/10.3390/v15020280 (2023).
Google Scholar
WHO. Global Excess Deaths Associated with COVID-19 (Modelled Estimates). https://www.who.int/data/sets/global-excess-deaths-associated-with-covid-19-modelled-estimates (2023).
Walkowiak, M. P. & Walkowiak, D. Underestimation in reporting excess COVID-19 death data in Poland during the first three pandemic waves. Int. J. Environ. Res. Public Health 19, 3692. https://doi.org/10.3390/ijerph19063692 (2022).
Google Scholar
Alicandro, G., Remuzzi, G., Centanni, S., Gerli, A. & La Vecchia, C. Excess total mortality during the Covid-19 pandemic in Italy: Updated estimates indicate persistent excess in recent months. Med. Lav. 113, e2022021. https://doi.org/10.23749/mdl.v113i2.13108 (2022).
Google Scholar
Schanzer, D. L., Tam, T. W. S., Langley, J. M. & Winchester, B. T. Influenza-attributable deaths, Canada 1990–1999. Epidemiol. Infect. 135, 1109–1116. https://doi.org/10.1017/S0950268807007923 (2007).
Google Scholar
Walkowiak, M. P. & Walkowiak, D. From respiratory diseases to nervous system disorders: Unraveling the certified causes of influenza-associated deaths in Poland from 2000 to 2019. Influenza Other Respir. Viruses 17, e13214. https://doi.org/10.1111/irv.13214 (2023).
Google Scholar
Nakaji, S. et al. Seasonal changes in mortality rates from main causes of death in Japan (1970–1999). Eur. J. Epidemiol. 19, 905–913. https://doi.org/10.1007/s10654-004-4695-8 (2004).
Google Scholar
Shaman, J. & Galanti, M. Will SARS-CoV-2 become endemic?. Science 370, 527–529. https://doi.org/10.1126/science.abe5960 (2020).
Google Scholar
Rocklöv, J., Forsberg, B. & Meister, K. Winter mortality modifies the heat-mortality association the following summer. Eur. Respir. J. 33, 245–251. https://doi.org/10.1183/09031936.00037808 (2009).
Google Scholar
Ha, J., Kim, H. & Hajat, S. Effect of previous-winter mortality on the association between summer temperature and mortality in South Korea. Environ. Health Perspect. 119, 542–546. https://doi.org/10.1289/ehp.1002080 (2011).
Google Scholar
Stafoggia, M., Forastiere, F., Michelozzi, P. & Perucci, C. A. Summer temperature-related mortality: Effect modification by previous winter mortality. Epidemiology 20, 575–583 (2009).
Google Scholar
Toulemon, L. & Barbieri, M. The mortality impact of the August 2003 heat wave in France: Investigating the ‘harvesting’ effect and other long-term consequences. Popul. Stud. 62, 39–53. https://doi.org/10.1080/00324720701804249 (2008).
Google Scholar
Yang, J. et al. Cardiovascular mortality risk attributable to ambient temperature in China. Heart 101, 1966–1972. https://doi.org/10.1136/heartjnl-2015-308062 (2015).
Google Scholar
Shor, E. & Roelfs, D. Climate shock: Moving to colder climates and immigrant mortality. Soc. Sci. Med. 235, 112397. https://doi.org/10.1016/j.socscimed.2019.112397 (2019).
Google Scholar
Momiyama, M. Biometeorological study of the seasonal variation of mortality in Japan and other countries on the seasonal disease calendar. Int. J. Biometeorol. 12, 377–393. https://doi.org/10.1007/BF01553284 (1968).
Google Scholar
Ekamper, P., Van Poppel, F., Van Duin, C. & Garssen, J. 150 Years of temperature-related excess mortality in the Netherlands. DemRes 21, 385–426. https://doi.org/10.4054/DemRes.2009.21.14 (2009).
Google Scholar
Carson, C., Hajat, S., Armstrong, B. & Wilkinson, P. Declining vulnerability to temperature-related mortality in London over the 20th century. Am. J. Epidemiol. 164, 77–84. https://doi.org/10.1093/aje/kwj147 (2006).
Google Scholar
Sheridan, S. C. & Dixon, P. G. Spatiotemporal trends in human vulnerability and adaptation to heat across the United States. Anthropocene 20, 61–73. https://doi.org/10.1016/j.ancene.2016.10.001 (2017).
Google Scholar
Coates, L., Haynes, K., O’Brien, J., McAneney, J. & de Oliveira, F. D. Exploring 167 years of vulnerability: An examination of extreme heat events in Australia 1844–2010. Environ. Sci. Policy 42, 33–44. https://doi.org/10.1016/j.envsci.2014.05.003 (2014).
Google Scholar
Caini, S., Alonso, W. J., Séblain, C.E.-G., Schellevis, F. & Paget, J. The spatiotemporal characteristics of influenza A and B in the WHO European Region: Can one define influenza transmission zones in Europe?. Eurosurveillance 22, 30606. https://doi.org/10.2807/1560-7917.ES.2017.22.35.30606 (2017).
Google Scholar
[ad_2]
Source link