Close Menu
The Daily PostingThe Daily Posting
  • Home
  • Android
  • Business
  • IPhone
    • Lifestyle
  • Politics
  • Europe
  • Science
    • Top Post
  • USA
  • World
Facebook X (Twitter) Instagram
Trending
  • Jennifer Lopez and Ben Affleck reveal summer plans after Europe trip
  • T20 World Cup: Quiet contributions from Akshar Patel, Kuldeep Yadav and Ravindra Jadeja justify Rohit Sharma’s spin vision | Cricket News
  • The impact of a sedentary lifestyle on health
  • Bartok: The World of Lilette
  • Economists say the sharp rise in the U.S. budget deficit will put a strain on Americans’ incomes
  • Our Times: Williams memorial unveiled on July 4th | Lifestyle
  • Heatwaves in Europe are becoming more dangerous: what it means for travelers
  • Christian Science speaker to visit Chatauqua Institute Sunday | News, Sports, Jobs
Facebook X (Twitter) Instagram
The Daily PostingThe Daily Posting
  • Home
  • Android
  • Business
  • IPhone
    • Lifestyle
  • Politics
  • Europe
  • Science
    • Top Post
  • USA
  • World
The Daily PostingThe Daily Posting
Europe

Exploring the paradoxical nature of cold temperature mortality in Europe

thedailyposting.comBy thedailyposting.comFebruary 7, 2024No Comments

[ad_1]

  • Guo, Y. et al. Global variation in the effects of ambient temperature on mortality: A systematic evaluation. Epidemiology 25, 781–789. https://doi.org/10.1097/EDE.0000000000000165 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gasparrini, A. et al. Projections of temperature-related excess mortality under climate change scenarios. Lancet Planet Health 1, e360–e367. https://doi.org/10.1016/S2542-5196(17)30156-0 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gasparrini, A. et al. Mortality risk attributable to high and low ambient temperature: A multicountry observational study. The Lancet 386, 369–375. https://doi.org/10.1016/S0140-6736(14)62114-0 (2015).

    Article 

    Google Scholar 

  • The Eurowinter Group. Cold exposure and winter mortality from ischaemic heart disease, cerebrovascular disease, respiratory disease, and all causes in warm and cold regions of Europe. The Lancet 349, 1341–1346. https://doi.org/10.1016/S0140-6736(96)12338-2 (1997).

    Article 

    Google Scholar 

  • Madaniyazi, L. et al. Seasonality of mortality under a changing climate: A time-series analysis of mortality in Japan between 1972 and 2015. Environ. Health Prev. Med. 26, 69. https://doi.org/10.1186/s12199-021-00992-8 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hajat, S. Health effects of milder winters: A review of evidence from the United Kingdom. Environ. Health 16, 109. https://doi.org/10.1186/s12940-017-0323-4 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walkowiak, M. P., Domaradzki, J. & Walkowiak, D. Unmasking the COVID-19 pandemic prevention gains: Excess mortality reversal in 2022. Public Health 223, 193–201. https://doi.org/10.1016/j.puhe.2023.08.004 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Falagas, M. E. et al. Seasonality of mortality: The September phenomenon in Mediterranean countries. CMAJ 181, 484–486. https://doi.org/10.1503/cmaj.090694 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alcoforado, M. J. et al. Weather and climate versus mortality in Lisbon (Portugal) since the 19th century. Appl. Geogr. 57, 133–141. https://doi.org/10.1016/j.apgeog.2014.12.017 (2015).

    Article 

    Google Scholar 

  • Liddell, C., Morris, C., Thomson, H. & Guiney, C. Excess winter deaths in 30 European countries 1980–2013: A critical review of methods. J. Public Health 38, 806–814. https://doi.org/10.1093/pubmed/fdv184 (2016).

    Article 

    Google Scholar 

  • Linares, C., Diaz, J., Tobías, A., Carmona, R. & Mirón, I. J. Impact of heat and cold waves on circulatory-cause and respiratory-cause mortality in Spain: 1975–2008. Stoch. Environ. Res Risk Assess. 29, 2037–2046. https://doi.org/10.1007/s00477-014-0976-2 (2015).

    Article 

    Google Scholar 

  • Jones, R. P. Excess winter mortality (EWM) as a dynamic forensic tool: Where, when, which conditions, gender, ethnicity and age. Int. J. Environ. Res. Public Health 18, 2161. https://doi.org/10.3390/ijerph18042161 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van Asten, L. et al. Mortality attributable to 9 common infections: Significant effect of influenza A, respiratory syncytial virus, influenza B, norovirus, and parainfluenza in elderly persons. J. Infect. Dis. 206, 628–639. https://doi.org/10.1093/infdis/jis415 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Almendra, R., Santana, P. & Vasconcelos, J. Evidence of social deprivation on the spatial patterns of excess winter mortality. Int. J. Public Health 62, 849–856. https://doi.org/10.1007/s00038-017-0964-7 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Gonseth, S., Nusslé, S., Bovet, P., Panese, F. & Wiemels, J. L. Excess winter deaths caused by cardiovascular diseases are associated with both mild winter temperature and socio-economic inequalities in the U.S. Int. J. Cardiol. 187, 642–644. https://doi.org/10.1016/j.ijcard.2015.03.412 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Iparraguirre, J. Have winter fuel payments reduced excess winter mortality in England and Wales?. J. Public Health (Oxf) 37, 26–33. https://doi.org/10.1093/pubmed/fdu063 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Healy, J. D. Excess winter mortality in Europe: A cross country analysis identifying key risk factors. J. Epidemiol. Community Health 57, 784–789. https://doi.org/10.1136/jech.57.10.784 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Madaniyazi, L. et al. Seasonal variation in mortality and the role of temperature: A multi-country multi-city study. Int. J. Epidemiol. 51, 122–133. https://doi.org/10.1093/ije/dyab143 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Douglas, S. & Rawles, J. Latitude-related changes in the amplitude of annual mortality rhythm. The biological equator in man. Chronobiol. Int. 16, 199–212. https://doi.org/10.3109/07420529909019086 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Eurostat. Eurostat Databse. https://ec.europa.eu/eurostat/data/database (2023).

  • Home European Climate Assessment & Dataset. https://www.ecad.eu/ (2023).

  • Beck, H. E. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214. https://doi.org/10.1038/sdata.2018.214 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barnett, A. G., Tong, S. & Clements, A. C. A. What measure of temperature is the best predictor of mortality?. Environ. Res. 110, 604–611. https://doi.org/10.1016/j.envres.2010.05.006 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Saha, M. V., Davis, R. E. & Hondula, D. M. Mortality displacement as a function of heat event strength in 7 US cities. Am. J. Epidemiol. 179, 467–474. https://doi.org/10.1093/aje/kwt264 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Qiao, Z., Guo, Y., Yu, W. & Tong, S. Assessment of short- and long-term mortality displacement in heat-related deaths in Brisbane, Australia, 1996–2004. Environ. Health Perspect. 123, 766–772. https://doi.org/10.1289/ehp.1307606 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rodrigues, M., Santana, P. & Rocha, A. Effects of extreme temperatures on cerebrovascular mortality in Lisbon: A distributed lag non-linear model. Int. J. Biometeorol. 63, 549–559. https://doi.org/10.1007/s00484-019-01685-2 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Rodrigues, M., Santana, P. & Rocha, A. Bootstrap approach to validate the performance of models for predicting mortality risk temperature in Portuguese Metropolitan Areas. Environ. Health 18, 25. https://doi.org/10.1186/s12940-019-0462-x (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Achebak, H., Devolder, D., Ingole, V. & Ballester, J. Reversal of the seasonality of temperature-attributable mortality from respiratory diseases in Spain. Nat. Commun. 11, 2457. https://doi.org/10.1038/s41467-020-16273-x (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Imai, C., Armstrong, B., Chalabi, Z., Mangtani, P. & Hashizume, M. Time series regression model for infectious disease and weather. Environ. Res. 142, 319–327. https://doi.org/10.1016/j.envres.2015.06.040 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Meerhoff, T. J., Paget, J. W., Kimpen, J. L. & Schellevis, F. Variation of respiratory syncytial virus and the relation with meteorological factors in different winter seasons. Pediatr. Infect. Dis. J. 28, 860. https://doi.org/10.1097/INF.0b013e3181a3e949 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Hawkes, M. T. et al. Seasonality of respiratory viruses at northern latitudes. JAMA Netw. Open 4, e2124650. https://doi.org/10.1001/jamanetworkopen.2021.24650 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bloom-Feshbach, K. et al. Latitudinal variations in seasonal activity of influenza and respiratory syncytial virus (RSV): A global comparative review. PLoS ONE 8, e54445. https://doi.org/10.1371/journal.pone.0054445 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tang, J. W. et al. Where have all the viruses gone? Disappearance of seasonal respiratory viruses during the COVID-19 pandemic. J. Med. Virol. 93, 4099–4101. https://doi.org/10.1002/jmv.26964 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rodgers, L. et al. Changes in seasonal respiratory illnesses in the United States during the coronavirus disease 2019 (COVID-19) pandemic. Clin. Infect. Dis. 73, S110–S117. https://doi.org/10.1093/cid/ciab311 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Telfar-Barnard, L., Baker, M. G., Wilson, N. & Howden-Chapman, P. The rise and fall of excess winter mortality in New Zealand from 1876 to 2020. Int. J. Biometeorol. https://doi.org/10.1007/s00484-023-02573-6 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Reicherz, F. et al. Waning immunity against respiratory syncytial virus during the coronavirus disease 2019 pandemic. J. Infect. Dis. 226, 2064–2068. https://doi.org/10.1093/infdis/jiac192 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Riepl, A. et al. The surge of RSV and other respiratory viruses among children during the second COVID-19 pandemic winter season. Front. Pediatr. 11, 1112150. https://doi.org/10.3389/fped.2023.1112150 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pruccoli, G. et al. The importance of RSV epidemiological surveillance: A multicenter observational study of RSV infection during the COVID-19 pandemic. Viruses 15, 280. https://doi.org/10.3390/v15020280 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • WHO. Global Excess Deaths Associated with COVID-19 (Modelled Estimates). https://www.who.int/data/sets/global-excess-deaths-associated-with-covid-19-modelled-estimates (2023).

  • Walkowiak, M. P. & Walkowiak, D. Underestimation in reporting excess COVID-19 death data in Poland during the first three pandemic waves. Int. J. Environ. Res. Public Health 19, 3692. https://doi.org/10.3390/ijerph19063692 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alicandro, G., Remuzzi, G., Centanni, S., Gerli, A. & La Vecchia, C. Excess total mortality during the Covid-19 pandemic in Italy: Updated estimates indicate persistent excess in recent months. Med. Lav. 113, e2022021. https://doi.org/10.23749/mdl.v113i2.13108 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schanzer, D. L., Tam, T. W. S., Langley, J. M. & Winchester, B. T. Influenza-attributable deaths, Canada 1990–1999. Epidemiol. Infect. 135, 1109–1116. https://doi.org/10.1017/S0950268807007923 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walkowiak, M. P. & Walkowiak, D. From respiratory diseases to nervous system disorders: Unraveling the certified causes of influenza-associated deaths in Poland from 2000 to 2019. Influenza Other Respir. Viruses 17, e13214. https://doi.org/10.1111/irv.13214 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nakaji, S. et al. Seasonal changes in mortality rates from main causes of death in Japan (1970–1999). Eur. J. Epidemiol. 19, 905–913. https://doi.org/10.1007/s10654-004-4695-8 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Shaman, J. & Galanti, M. Will SARS-CoV-2 become endemic?. Science 370, 527–529. https://doi.org/10.1126/science.abe5960 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rocklöv, J., Forsberg, B. & Meister, K. Winter mortality modifies the heat-mortality association the following summer. Eur. Respir. J. 33, 245–251. https://doi.org/10.1183/09031936.00037808 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Ha, J., Kim, H. & Hajat, S. Effect of previous-winter mortality on the association between summer temperature and mortality in South Korea. Environ. Health Perspect. 119, 542–546. https://doi.org/10.1289/ehp.1002080 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stafoggia, M., Forastiere, F., Michelozzi, P. & Perucci, C. A. Summer temperature-related mortality: Effect modification by previous winter mortality. Epidemiology 20, 575–583 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Toulemon, L. & Barbieri, M. The mortality impact of the August 2003 heat wave in France: Investigating the ‘harvesting’ effect and other long-term consequences. Popul. Stud. 62, 39–53. https://doi.org/10.1080/00324720701804249 (2008).

    Article 

    Google Scholar 

  • Yang, J. et al. Cardiovascular mortality risk attributable to ambient temperature in China. Heart 101, 1966–1972. https://doi.org/10.1136/heartjnl-2015-308062 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Shor, E. & Roelfs, D. Climate shock: Moving to colder climates and immigrant mortality. Soc. Sci. Med. 235, 112397. https://doi.org/10.1016/j.socscimed.2019.112397 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Momiyama, M. Biometeorological study of the seasonal variation of mortality in Japan and other countries on the seasonal disease calendar. Int. J. Biometeorol. 12, 377–393. https://doi.org/10.1007/BF01553284 (1968).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ekamper, P., Van Poppel, F., Van Duin, C. & Garssen, J. 150 Years of temperature-related excess mortality in the Netherlands. DemRes 21, 385–426. https://doi.org/10.4054/DemRes.2009.21.14 (2009).

    Article 

    Google Scholar 

  • Carson, C., Hajat, S., Armstrong, B. & Wilkinson, P. Declining vulnerability to temperature-related mortality in London over the 20th century. Am. J. Epidemiol. 164, 77–84. https://doi.org/10.1093/aje/kwj147 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Sheridan, S. C. & Dixon, P. G. Spatiotemporal trends in human vulnerability and adaptation to heat across the United States. Anthropocene 20, 61–73. https://doi.org/10.1016/j.ancene.2016.10.001 (2017).

    Article 

    Google Scholar 

  • Coates, L., Haynes, K., O’Brien, J., McAneney, J. & de Oliveira, F. D. Exploring 167 years of vulnerability: An examination of extreme heat events in Australia 1844–2010. Environ. Sci. Policy 42, 33–44. https://doi.org/10.1016/j.envsci.2014.05.003 (2014).

    Article 

    Google Scholar 

  • Caini, S., Alonso, W. J., Séblain, C.E.-G., Schellevis, F. & Paget, J. The spatiotemporal characteristics of influenza A and B in the WHO European Region: Can one define influenza transmission zones in Europe?. Eurosurveillance 22, 30606. https://doi.org/10.2807/1560-7917.ES.2017.22.35.30606 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • [ad_2]

    Source link

    thedailyposting.com
    • Website

    Related Posts

    Jennifer Lopez and Ben Affleck reveal summer plans after Europe trip

    June 29, 2024

    Heatwaves in Europe are becoming more dangerous: what it means for travelers

    June 28, 2024

    Mifflin County Travel Club’s European Adventures | News, Sports, Jobs

    June 28, 2024
    Leave A Reply Cancel Reply

    ads
    © 2025 thedailyposting. Designed by thedailyposting.
    • Home
    • About us
    • Contact us
    • DMCA
    • Privacy Policy
    • Terms of Service
    • Advertise with Us
    • 1711155001.38
    • xtw183871351
    • 1711198661.96
    • xtw18387e4df
    • 1711246166.83
    • xtw1838741a9
    • 1711297158.04
    • xtw183870dc6
    • 1711365188.39
    • xtw183879911
    • 1711458621.62
    • xtw183874e29
    • 1711522190.64
    • xtw18387be76
    • 1711635077.58
    • xtw183874e27
    • 1711714028.74
    • xtw1838754ad
    • 1711793634.63
    • xtw183873b1e
    • 1711873287.71
    • xtw18387a946
    • 1711952126.28
    • xtw183873d99
    • 1712132776.67
    • xtw183875fe9
    • 1712201530.51
    • xtw1838743c5
    • 1712261945.28
    • xtw1838783be
    • 1712334324.07
    • xtw183873bb0
    • 1712401644.34
    • xtw183875eec
    • 1712468158.74
    • xtw18387760f
    • 1712534919.1
    • xtw183876b5c
    • 1712590059.33
    • xtw18387aa85
    • 1712647858.45
    • xtw18387da62
    • 1712898798.94
    • xtw1838737c0
    • 1712953686.67
    • xtw1838795b7
    • 1713008581.31
    • xtw18387ae6a
    • 1713063246.27
    • xtw183879b3c
    • 1713116334.31
    • xtw183872b3a
    • 1713169981.74
    • xtw18387bf0d
    • 1713224008.61
    • xtw183873807
    • 1713277771.7
    • xtw183872845
    • 1713329335.4
    • xtw183874890
    • 1716105960.56
    • xtw183870dd9
    • 1716140543.34
    • xtw18387691b

    Type above and press Enter to search. Press Esc to cancel.