Close Menu
The Daily PostingThe Daily Posting
  • Home
  • Android
  • Business
  • IPhone
    • Lifestyle
  • Politics
  • Europe
  • Science
    • Top Post
  • USA
  • World
Facebook X (Twitter) Instagram
Trending
  • Jennifer Lopez and Ben Affleck reveal summer plans after Europe trip
  • T20 World Cup: Quiet contributions from Akshar Patel, Kuldeep Yadav and Ravindra Jadeja justify Rohit Sharma’s spin vision | Cricket News
  • The impact of a sedentary lifestyle on health
  • Bartok: The World of Lilette
  • Economists say the sharp rise in the U.S. budget deficit will put a strain on Americans’ incomes
  • Our Times: Williams memorial unveiled on July 4th | Lifestyle
  • Heatwaves in Europe are becoming more dangerous: what it means for travelers
  • Christian Science speaker to visit Chatauqua Institute Sunday | News, Sports, Jobs
Facebook X (Twitter) Instagram
The Daily PostingThe Daily Posting
  • Home
  • Android
  • Business
  • IPhone
    • Lifestyle
  • Politics
  • Europe
  • Science
    • Top Post
  • USA
  • World
The Daily PostingThe Daily Posting
Lifestyle

Commensal lifestyle regulated by a negative feedback loop between Arabidopsis ROS and the bacterial T2SS

thedailyposting.comBy thedailyposting.comJanuary 11, 2024No Comments

[ad_1]

  • Müller, D. B., Vogel, C., Bai, Y. & Vorholt, J. A. The plant microbiota: systems-level insights and perspectives. Annu. Rev. Genet. 50, 211–234 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Drew, G. C., Stevens, E. J. & King, K. C. Microbial evolution and transitions along the parasite-mutualist continuum. Nat. Rev. Microbiol. 19, 623–638 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jochum, L. & Stecher, B. Label or concept—what is a pathobiont? Trends Microbiol. 28, 789–792 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Caballero, F. G., Pickard, J. M., & Nunez, G. Microbiota-mediated colonization resistance: mechanisms and regulation. Nat. Rev. Microbiol. 21, 347–360 (2023).

  • Dodds, P. N. & Rathjen, J. P. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 11, 539–548 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zipfel, C. et al. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428, 764–767 (2004).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • Zipfel, C. et al. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125, 749–760 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Roux, M. et al. The Arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens. Plant Cell 23, 2440–2455 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miya, A. et al. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc. Natl Acad. Sci. USA 104, 19613–19618 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Boller, T. & Felix, G. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60, 379–406 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xin, X. F. et al. Bacteria establish an aqueous living space in plants crucial for virulence. Nature 539, 524–529 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, T. et al. A plant genetic network for preventing dysbiosis in the phyllosphere. Nature 580, 653–657 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Torres, M. A., Dangl, J. L. & Jones, J. D. Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc. Natl Acad. Sci. USA 99, 517–522 (2002).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • Castro, B. et al. Stress-induced reactive oxygen species compartmentalization, perception and signalling. Nat. Plants 7, 403–412 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bolwell, G. P.& Daudi, A. Reactive oxygen species in plant pathogen interactions. In Reactive Oxygen Species in Plant Signaling and Communication in Plants 2nd edn, Vol. 3 (eds Rio, L. & Puppo, A.) Ch. 452 (Springer, 2009).

  • Song, Y. et al. FERONIA restricts Pseudomonas in the rhizosphere microbiome via regulation of reactive oxygen species. Nat. Plants 7, 644–654 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pfeilmeier, S. et al. The plant NADPH oxidase RBOHD is required for microbiota homeostasis in leaves. Nat. Microbiol. 6, 852–864 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tzipilevich, E., Russ, D., Dangl, J. L. & Benfey, P. N. Plant immune system activation is necessary for efficient root colonization by auxin-secreting beneficial bacteria. Cell Host Microb. 29, 1507–1520.e4 (2021).

    Article 
    CAS 

    Google Scholar 

  • Kadota, Y. et al. Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity. Mol. Cell 54, 43–55 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Salmond, G. P. Secretion of extracellular virulence factors by plant pathogenic bacteria. Annu. Rev. Phytopathol. 32, 181–200 (1994).

    Article 
    CAS 

    Google Scholar 

  • Tampakaki, A. P. Commonalities and differences of T3SSs in rhizobia and plant pathogenic bacteria. Front. plant Sci. 5, 114 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kambara, K. et al. Rhizobia utilize pathogen-like effector proteins during symbiosis. Mol. Microbiol. 71, 92–106 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Maekawa, T., Kufer, T. A. & Schulze-Lefert, P. NLR functions in plant and animal immune systems: so far and yet so close. Nat. Immunol. 12, 817–826 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Teixeira, P. J. P. L. et al. Specific modulation of the root immune system by a community of commensal bacteria. Proc. Natl Acad. Sci. USA 118, e2100678118 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bai, Y. et al. Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528, 364–369 (2015).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • Nobori, T. et al. Dissecting the cotranscriptome landscape of plants and their microbiota. EMBO Rep. 23, e55380 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carlström, C. I. et al. Synthetic microbiota reveal priority effects and keystone strains in the Arabidopsis phyllosphere. Nat. Ecol. Evol. 3, 1445–1454 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thiergart, T. et al. Root microbiota assembly and adaptive differentiation among European Arabidopsis populations. Nat. Ecol. Evol. 4, 122–131 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Karasov, T. L. et al. Arabidopsis thaliana and pseudomonas pathogens exhibit stable associations over evolutionary timescales. Cell Host Microb. 24, 168–179.e4 (2018).

    Article 
    CAS 

    Google Scholar 

  • Cianciotto, N. P. Type II secretion: a protein secretion system for all seasons. Trends Microbiol. 13, 581–588 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nobori, T. et al. Transcriptome landscape of a bacterial pathogen under plant immunity. Proc. Natl Acad. Sci. USA 115, E3055–E3064 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vogel, C. M., Potthoff, D. B., Schäfer, M., Barandun, N. & Vorholt, J. A. Protective role of the Arabidopsis leaf microbiota against a bacterial pathogen. Nat. Microbiol. 6, 1537–1548 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Veluchamy, S., Hind, S. R., Dunham, D. M., Martin, G. B. & Panthee, D. R. Natural variation for responsiveness to flg22, flgII-28, and csp22 and Pseudomonas syringae pv. tomato in heirloom tomatoes. PloS One 9, e106119 (2014).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Stringlis, I. A. et al. Root transcriptional dynamics induced by beneficial rhizobacteria and microbial immune elicitors reveal signatures of adaptation to mutualists. Plant J. Cell Mol. Biol. 93, 166–180 (2018).

    Article 
    CAS 

    Google Scholar 

  • Parys, K. et al. Signatures of antagonistic pleiotropy in a bacterial flagellin epitope. Cell Host Microb. 29, 620–634.e9 (2021).

    Article 
    CAS 

    Google Scholar 

  • Colaianni, N. R. et al. A complex immune response to flagellin epitope variation in commensal communities. Cell Host Microb. 29, 635–649.e9 (2021).

    Article 
    CAS 

    Google Scholar 

  • Clasen, S. J. et al. Silent recognition of flagellins from human gut commensal bacteria by Toll-like receptor 5. Sci. Immunol. 8, eabq7001 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Spindler, M. P. et al. Human gut microbiota stimulate defined innate immune responses that vary from phylum to strain. Cell Host Microb. 30, 1481–1498.e5 (2022).

    Article 
    CAS 

    Google Scholar 

  • Durán, P. et al. Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell 175, 973–983.e14 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, K. W. et al. Coordination of microbe–host homeostasis by crosstalk with plant innate immunity. Nat. Plants 7, 814–825 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shalev, O. et al. Commensal Pseudomonas strains facilitate protective response against pathogens in the host plant. Nat. Ecol. Evol. 6, 383–396 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wolinska, K. W. et al. Tryptophan metabolism and bacterial commensals prevent fungal dysbiosis in Arabidopsis roots. Proc. Natl Acad. Sci. USA 118, e2111521118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jakob, K. et al. Pseudomonas viridiflava and P. syringae-natural pathogens of Arabidopsis thaliana. Mol. Plant Microb. Interact. MPMI 15, 1195–1203 (2002).

    Article 
    CAS 

    Google Scholar 

  • Agler, M. T. et al. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol. 14, e1002352 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yardeni, T. et al. Host mitochondria influence gut microbiome diversity: a role for ROS. Sci. Signal. 12, eaaw3159 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Miller, B. M. et al. Anaerobic respiration of NOX1-derived hydrogen peroxide licenses bacterial growth at the colonic curface. Cell Host Microb. 28, 789–797.e5 (2020).

    Article 
    CAS 

    Google Scholar 

  • Denness, L. et al. Cell wall damage-induced lignin biosynthesis is regulated by a reactive oxygen species- and jasmonic acid-dependent process in Arabidopsis. Plant Physiol. 156, 1364–1374 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fujita, S. et al. SCHENGEN receptor module drives localized ROS production and lignification in plant roots. EMBO J. 39, e103894 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miller, G. et al. The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci. Signal. 2, ra45 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Kwak, J. M. et al. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. The. EMBO J. 22, 2623–2633 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sierla, M., Waszczak, C., Vahisalu, T. & Kangasjärvi, J. Reactive oxygen species in the regulation of stomatal movements. Plant Physiol. 171, 1569–1580 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pfeilmeier, S. et al. Dysbiosis of a leaf microbiome is caused by enzyme secretion of opportunistic Xanthomonas strains. bioRvix https://doi.org/10.1101/2023.05.09.539948 (2023)

  • Expert, D. et al. Dickeya dadantii pectic enzymes necessary for virulence are also responsible for activation of the Arabidopsis thaliana innate immune system. Mol. Plant Pathol. 19, 313–327 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ma, Z. et al. A phytophthora sojae glycoside hydrolase 12 protein is a major virulence factor during soybean infection and is recognized as a PAMP. Plant Cell 27, 2057–2072 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Y. et al. Leucine-rich repeat receptor-like gene screen reveals that Nicotiana RXEG1 regulates glycoside hydrolase 12 MAMP detection. Nat. Commun. 9, 594 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Gui, Y. J. et al. Verticillium dahliae manipulates plant immunity by glycoside hydrolase 12 proteins in conjunction with carbohydrate-binding module 1. Environ. Microbiol. 19, 1914–1932 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Teixeira, P. J. P., Colaianni, N. R., Fitzpatrick, C. R. & Dangl, J. L. Beyond pathogens: microbiota interactions with the plant immune system. Curr. Opin. Microbiol. 49, 7–17 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vetter, M., Karasov, T. L. & Bergelson, J. Differentiation between MAMP triggered defenses in Arabidopsis thaliana. PLoS Genet. 12, e1006068 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Furukawa, T., Inagaki, H., Takai, R., Hirai, H. & Che, F. S. Two distinct EF-Tu epitopes induce immune responses in rice and Arabidopsis. Mol. Plant Microb. Interact. MPMI 27, 113–124 (2014).

    Article 
    CAS 

    Google Scholar 

  • Lacombe, S. et al. Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nat. Biotechnol. 28, 365–369 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nobori, T. et al. Multidimensional gene regulatory landscape of a bacterial pathogen in plants. Nat. Plants 6, 883–896 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, Y. et al. Site-specific cleavage of bacterial MucD by secreted proteases mediates antibacterial resistance in Arabidopsis. Nat. Commun. 10, 2853 (2019).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Wang, W. et al. An Arabidopsis secondary metabolite directly targets expression of the bacterial type III secretion system to inhibit bacterial virulence. Cell Host Microb. 27, 601–613.e7 (2020).

    Article 
    CAS 

    Google Scholar 

  • Lindsey, B. E. 3rd, Rivero, L., Calhoun, C. S., Grotewold, E. & Brkljacic, J. Standardized method for high-throughput sterilization of Arabidopsis seeds. J. Visual. Exp. Jove 17, 56587 (2017).

    Google Scholar 

  • Hinsch, M. & Staskawicz, B. Identification of a new Arabidopsis disease resistance locus, RPs4, and cloning of the corresponding avirulence gene, avrRps4, from Pseudomonas syringae pv. pisi. Mol. Plant Microb. Interact. 9, 55–61 (1996).

    Article 
    CAS 

    Google Scholar 

  • Matsumoto, A. et al. A versatile Tn7 transposon-based bioluminescence tagging tool for quantitative and spatial detection of bacteria in plants. Plant Commun. 3, 100227 (2022).

  • Smith, J. M. & Heese, A. Rapid bioassay to measure early reactive oxygen species production in Arabidopsis leave tissue in response to living Pseudomonas syringae. Plant Methods 10, 6 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Merrell, D. S., Hava, D. L. & Camilli, A. Identification of novel factors involved in colonization and acid tolerance of Vibrio cholerae. Mol. Microbiol. 43, 1471–1491 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kvitko, B. H. & Collmer, A. Construction of Pseudomonas syringae pv. tomato DC3000 mutant and polymutant strains. Methods Mol. Biol. Clifton N. J. 712, 109–128 (2011).

    Article 
    CAS 

    Google Scholar 

  • Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2011).

    Article 

    Google Scholar 

  • Kessler, B., de Lorenzo, V. & Timmis, K. N. Timmis. A general system to integrate lacZ fusions into the chromosomes of gram-negative eubacteria: regulation of the Pm-promotor of the Tol-plasmid studied with all controlling elements in monocopy. Mol. Gen. Genet. 233, 293–301 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wengelnik, K., Marie, C., Russel, M. & Bonas, U. Expression and localization of HrpA1, a protein of Xanthomonas campestris pv. vesicatoria essential for pathogenicity and induction ofthe hypersensitive reaction. J. Bacteriol. 178, 1061–1069 (1996).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nobori, T. & Tsuda, K. In planta transcriptome analysis of Pseudomonas syringae. Bio. Protoc. 8, e2987 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liao, Y., Smyth, G. K. & Shi, W. “The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads.”. Nuc. Acids Res. 47, e47 (2019).

    Article 
    CAS 

    Google Scholar 

  • Love, M. I., Huber, W. & Anders, S. “Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.”. Genome Biol. 15, 550 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ritchie, M. E. et al. “limma powers differential expression analyses for RNA-sequencing and microarray studies.”. Nuc. Acids Res. 43, e47 (2015).

    Article 

    Google Scholar 

  • Storey, J. D., Bass, A. J., Dabney, A., Robinson, D. et al. qvalue: Q-Value Estimation for False Discovery Rate Control http://github.com/jdstorey/qvalue (2022).

  • Core Team, R. A language and environment for statistical computing. R Foundation for Statistical Computing http://www.R-project.org/ (2013).

  • Charrad, M., Ghazzali, N., Boiteau, V. & Niknafs, A. NbClust: An R package for determining the relevant number of clusters in a data set. J. Stat. Softw. 61, 1–36 (2014).

    Article 

    Google Scholar 

  • Struyf, A., Hubert, M. & Rousseeuw, P. “Clustering in an object-oriented environment.” J. Statist. Softw. https://doi.org/10.18637/jss.v001.i04 (1997).

  • Gu, Z. “Complex Heatmap Visualization” https://doi.org/10.1002/imt2.43 (2022).

  • Wu T. et al. “ClusterProfiler 4.0: A universal enrichment tool for interpreting omics data.” Innovation 2, 100141 (2021).

  • Mendiburu, F. & Yaseen, M. Agricolae: Statistical Procedures for Agricultural Research https://myaseen208.github.io/agricolae/https://cran.r-project.org/package=agricolae (2020).

  • Drula, E. et al. The carbohydrate-active enzyme database: functions and literature. Nuc. Acids Res. 50, D571–D577 (2022).

    Article 
    CAS 

    Google Scholar 

  • Cantalapiedra, C. P., Hernandez-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-mapper v2: Functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38, 5825.5829 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zheng, J. et al. dbCAN-seq update: CAZyme gene clusters and substrates in microbiomes. Nuc. Acids Res. 51, D557–D563 (2023).

    Article 
    CAS 

    Google Scholar 

  • [ad_2]

    Source link

    thedailyposting.com
    • Website

    Related Posts

    The impact of a sedentary lifestyle on health

    June 29, 2024

    Our Times: Williams memorial unveiled on July 4th | Lifestyle

    June 28, 2024

    Seniors’ group promotes “active lifestyles” for seniors

    June 28, 2024
    Leave A Reply Cancel Reply

    ads
    © 2025 thedailyposting. Designed by thedailyposting.
    • Home
    • About us
    • Contact us
    • DMCA
    • Privacy Policy
    • Terms of Service
    • Advertise with Us
    • 1711155001.38
    • xtw183871351
    • 1711198661.96
    • xtw18387e4df
    • 1711246166.83
    • xtw1838741a9
    • 1711297158.04
    • xtw183870dc6
    • 1711365188.39
    • xtw183879911
    • 1711458621.62
    • xtw183874e29
    • 1711522190.64
    • xtw18387be76
    • 1711635077.58
    • xtw183874e27
    • 1711714028.74
    • xtw1838754ad
    • 1711793634.63
    • xtw183873b1e
    • 1711873287.71
    • xtw18387a946
    • 1711952126.28
    • xtw183873d99
    • 1712132776.67
    • xtw183875fe9
    • 1712201530.51
    • xtw1838743c5
    • 1712261945.28
    • xtw1838783be
    • 1712334324.07
    • xtw183873bb0
    • 1712401644.34
    • xtw183875eec
    • 1712468158.74
    • xtw18387760f
    • 1712534919.1
    • xtw183876b5c
    • 1712590059.33
    • xtw18387aa85
    • 1712647858.45
    • xtw18387da62
    • 1712898798.94
    • xtw1838737c0
    • 1712953686.67
    • xtw1838795b7
    • 1713008581.31
    • xtw18387ae6a
    • 1713063246.27
    • xtw183879b3c
    • 1713116334.31
    • xtw183872b3a
    • 1713169981.74
    • xtw18387bf0d
    • 1713224008.61
    • xtw183873807
    • 1713277771.7
    • xtw183872845
    • 1713329335.4
    • xtw183874890
    • 1716105960.56
    • xtw183870dd9
    • 1716140543.34
    • xtw18387691b

    Type above and press Enter to search. Press Esc to cancel.